Showing posts with label farming. Show all posts
Showing posts with label farming. Show all posts

Wednesday, May 1, 2019

Florida Citrus Industry Is Facing An Existential Threat From Bacteria, But A Virus Offers Hope



Orange Juice (Image by AlbanyColley, Pixabay)

(This article was originally posted on Forbes on 4/30/19) When I was growing up in the early 1970s there was a ubiquitous television ad promoting Florida orange juice including the line, "a day without orange juice is like a day without sunshine." That "dark day" could be approaching soon, at least in terms of the juices we get from the "Sunshine State" and the livelihood of the farmers who grow the trees that have long supplied us.

The iconic orange juice industry in Florida is facing an existential threat because of a severe bacterial disease of citrus that was introduced to the US from Asia in 2005 (the Asian Citrus Psyllid insect that helps to spread it was first found in Floria in 1998). A Florida homeowner may have inadvertently introduced the bacterium to the US in citrus budwood he brought home from Asia to graft onto his backyard trees.  The malady is often called "Citrus Greening," but in Asia it is known as Hualongbong and so we now tend to call it HLB. HLB has since spread to virtually all the back yard and commercial citrus trees in Florida, killing many of the trees and forcing the growers to struggle to keep the remaining ones alive with intensive nutrient feeding and other stop-gap measures.  


Oranges showing symptoms of "Greening" or HLB (USDA image)


In 2013 journalist Amy Harmon wrote an excellent article for the New York Times about the history of this crisis titled: "The Race To Save The Orange By Altering Its DNA."  She described in detail how this long-anticipated threat finally materialized and how the Florida growers funded university research to explore possible solutions including genetic engineering.  A biotech solution was identified using some defensive peptides that are naturally made by spinach plants, but as Harmon explained, that sort of "GMO" solution was a hard sell to the big, brand-sensitive juice companies who buy the oranges.  I have been personally disappointed to watch the way that the juice companies have acquiesced to the pressure to use a "non-GMO" label.  That unfortunate marketing ploy now appears on all the brands including the one company that relies exclusively on Florida fruit as opposed to a mix with imports. This is a classic case of how "control of the food supply" is really the in the hands of anti-technology activist groups, not the big companies most often so accused.


This is my current bottle of FL grapefruit juice, but I have to "hold my nose" when buying in because of the misleading "non-GMO" label (Ruby Red grapefruit was generated using mutagenesis breeding, no a problem but definitely "genetically modified")


But realistically, deploying a biotech trait like this in a perennial crop would be quite slow because the growers would have to start over with new trees or possibly graft onto the existing rootstocks and regrow the entire above ground part of the plant.  In the mean time, the industry has been steadily declining and the fear is that it will reach a point where it just isn't worth maintaining the juice plants.  Orange juice can certainly be imported, but for a time the Florida industry was able to distinguish itself by its better tasting "not-from-concentrate" advantage.  

This same destructive disease now threatens the citrus industries in other states.  The disease and its insect vector are already present in California, but for now it has been contained to mostly urban/suburban areas in the southern part of the state.  If it spread to something like the tangerine/mandarin groves of the Central Valley and other parts of the $3.4 Billion California citrus industry, that would be a disaster (think Cuties(r), Halos(r), lemons, navel oranges, grapefruit etc.)
From my current bag of mandarins (again sadly with the misleading non-GMO label)

But I'm happy to say that today I'm writing about a newer technological approach to deal with this disease.  An extended public comment period ran through Tuesday May 30th in which the USDA asked for feedback on the question of whether or not to approve the commercial deployment of a different way to protect orange trees from the HLB disease.  It is something which could possibly be implemented much more quickly than by genetically engineering the trees themselves.  This is something that could be presented in a way that would make it sound scary, but its really not. 

There is a virus that infects orange trees called Tristezea.  It also came from outside the US and began causing problems in all the citrus growing regions of the US in the 1960s.  At first it was also a lethal disease, but eventually it was found that by avoiding certain rootstock types, the virus could infect the trees with no symptoms at all.  (Virtually all fruit crops have been grown on rootstocks for a centuries).  In Florida today all but the youngest trees are infected with Tristeza, but with strains that are benign for trees when they are on the rootstocks now used.  The new biotech solution is to add genetic sequences for the spinach antimicrobial peptides to the RNA of the virus, and then get that virus to infect orange trees.  This could be done with new trees when they are in nurseries, but it may be possible to also "graft transmit" the virus into at least they younger trees already out in the commercial groves.  In this case that new small branch does not need to take over, it just allow the virus+peptides to move into the other parts of the existing trees.  In any case, modifying the virus is far more efficient than having to separately engineer and propagate each of the popular citrus varieties in the industry.

A small scale trial that was run for several years confirms that this sort of virus inoculation can make the trees resistant to the HLB pest and to allow full productivity.  As part of that experiment, trees with no virus were planted all around these test blocks and then followed to see if the engineered virus ever moved into them (the virus can be transmitted by aphids under certain circumstances).  In fact the virus didn't move, though even if it did it wouldn't be a big issue.  Also, over time the modified virus loses the genes for the spinach peptides which is then another barrier to any sort of unwanted spread.  Also it is clear that the Tristezea virus does not have any bad effects on other crops or wild plants since the virus has been very widespread for decades without causing problems in other species.

I've included the comments that I submitted to the USDA below concluding with my hope that the experience in Florida will pave the way for using a similar approach in California if we ever have to save that industry as well. I sincerely hope that the USDA does approve this new method and I sincerely hope that those who control the juice plants will both help the growers that supply them and trust consumers to be smart enough to listen to the logic about this technology.

This is the Website about the USDA comment process:

--> https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/brs-news-and-information/2019_brs_news/ctv_reopen_april2019
This is the link for comments followed by what I submitted:


-->

I am writing in support of this release permit as I believe that it is a very logical strategy with the potential to literally save the citrus industry in Florida. If it proves successful it could play a similar role in the unfortunately likely scenario that HLB becomes a more serious threat to citrus production in other regions such as California. I am a plant pathologist with a Ph.D. from the University of California, Davis. My own work there was with fungal diseases, but I spent a lot of time in the lab of Dr. Robert Shepherd, a National Academy virologist. Starting at that time in the late 1970s I had many close colleagues who were working on the early stages of plant genetic engineering and I have continued to follow that field ever since. The progress of the field has been remarkable. 

In preparation for this comment I read all the available documents from the USDA site and corresponded with some of the university researchers who have done the relevant work on issues like the potential for recombination and transmission of the modified Tristeza virus.


This approach of using an asymptomatic strain of the virus is particularly logical for this perennial crop. To engineer the orange scion itself would require the generation of separate "events" in each of the important cultivars and then a delay to graft those onto existing trees and bringing that new "top" into bearing. Using the virus makes it far more feasible to utilize more than one combination of antimicrobial peptides which will help to prevent the development of resistance in the HLB bacterial pathogen population. 


There are several convincing reasons that this strategy is likely to be safe with regard to any potential for spread to non-target citrus or to other plant species. There is very low rate of aphid transmission even under ideal lab conditions. The track record of zero transmission to sentinel plants in the previous limited release further demonstrates that the modified virus is extremely unlikely to move beyond the intended trees. The fact that recombination will likely lead to loss of the peptide part of the viral genome is another safety factor and will again allow for the deployment of different peptides in a follow-up grafting step if that is needed down the line. The fact that the Tristeza strains to be used are already ubiquitous in Florida citrus represents a multi-decade "experiment" showing that this virus represents no threat to other species or to citrus that is grown on the rootstocks for which infections by these strains are asymptomatic. With the tremendous advances in the speed, sensitivity and affordability of genetic assays, it will be possible to rigorously monitor the efficacy and safety of the strategy. As for the anti-microbial peptides from spinach - long experience supports their safety from a food point of view.


I believe that this release can be the culmination of an exemplary example of an effort funded by the grower community and partnering with the public, academic community to employ state-of-the-art science.


Monday, October 12, 2015

The Productivity Of Organic Farming In The US: Mind The Gap


This warning from the London "Tube" could apply to organic farming
(This post originally appeared on Forbes 10/9/15)
The productivity of organic farming is typically lower than that of comparable “conventional” farms. This difference is sometimes debated, but a recent USDA survey of organic agriculture demonstrates that commercial organic in the U.S. has a significant yield gap.

I compared 2014 survey data from organic growers with overall agricultural yield statistics for that year on a crop by crop, state by state basis.  The picture that emerges is clear - organic yields are mostly lower. To have raised all U.S. crops as organic in 2014 would have required farming of one hundred nine million more acres of land. That is an area equivalent to all the parkland and wildland areas in the lower 48 states or 1.8 times as much as all the urban land in the nation. As of 2014 the reported acreage of organic cropland only represented 0.44% of the total, but if organic were to expand significantly, its lower land-use-efficiency would become problematic.  This is one of several reasons to question the assertion that organic farming is better for the environment.
The USDA conducted a detailed survey of organics in 2008 and then again in 2014. Information is collected about the number of farms, the acres of crops harvested, the production from those acres, and the value of what is sold.  The USDA also collects similar data every year for agriculture in general and makes it very accessible via Quick Stats.  It is interesting that they don’t publish any comparisons of these two data sets as they would be able to make comparisons on a county basis. By working with both USDA data resources I was able to find 370 good comparisons of organic and total data for the same crop in the same state and where the organic represented at least 20 acres.  That comparison set covers 80% of US crop acreage.



For 292 of those comparisons, the organic yields were lower (84% on an area basis).  There were 55 comparisons where organic yield was higher, but 89% of the higher yielding organic examples involved hay and silage crops rather than food crops. The organic yield gap is predominant for row crops, fruit crops and vegetables as can be seen in the graphs below.

The reasons for the gap vary with crop and geography.  In some cases the issue is the ability to meet periods of peak nutrient demand using only organic sources.  The issue can be competition from weeds because herbicides are generally lacking for organic.  In some cases its reflects higher yield loss to diseases and insects. Although organic farmers definitely use pesticides, the restriction to natural options can leave crops vulnerable to damage.
I’ve posted a much more detailed summary of this information on SCRIBD with the data at the state level.





There is some potential for artifacts within this data set.  If the proportion of irrigated and non-irrigated land differs between organic and conventional that would skew the data.  With lettuce and spinach it is likely that the organic is proportionally more in the “baby” category making yields appear dramatically lower.  But overall this window on farming is useful for understanding the current state of commercial organic production.  Since the supply of prime farmland is finite, and water is in short supply in places like California, resource-use-efficiency is an issue even at the current scale of organic (1.5 million cropland acres, 3.6 million including pasture and rangeland).

You are welcome to comment here and/or to email me at savage.sd@gmail.com. I'd be happy to share a data file with interested parties and to get feedback about where particular yield comparisons might be misleading.
A more detailed presentation is available at https://www.scribd.com/doc/283996769/The-Yield-Gap-For-Organic-Farming


Friday, October 9, 2015

What Is Given Up When EU Countries Opt-out Of GMO? And For Whom?

A deadline passed on Oct. 3 for countries in the EU to opt out of future "GMO Crop" planting approvals. This "opt out" arrangement was a compromise designed to also allow some other EU countries to move ahead with GM approvals - something that has been extremely difficult to do through any united EU regulatory process.  There is a possibility that farmers in these countries may finally be allowed to use 20-year-old technology that is widely adopted around the world.  On the other side of the coin, there are 19 countries have indicated that they wanted to eschew this technology indefinitely (Austria, Belgium (Wallonia), Bulgaria, Croatia, Cyprus, Denmark, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, The Netherlands, Poland, Solvenia, the UK - Scotland, Northern Ireland and Wales). The scientific community in the EU is appalled by the way that politics trumps science, but their voice has had little effect.  It is worthwhile to consider what these anti-GMO countries are not giving up, what they are giving up, and who it is that will be affected by the decision.

What Isn't Being Given Up


Few if any farmers in the "opt out" countries will have to give up their prior use of biotech crops. They have never had that opportunity, so this changes nothing in terms of existing practice. Also, since this only pertains to crops grown in the EU, it won't likely change the fact that the region has been importing massive amounts of "GM" animal feed crops from countries that allow biotech traits. Countries in the EU often present themselves as net exporters of food, but that is only true in terms of net income.  Many EU countries import animal feed and then export meat, dairy and other higher value products. That part of their economy is very dependent on imports, and these current changes are in no way a move towards food supply self sufficiency in the region.
The EU consumers in these 19 countries are not giving up their own comfort.  These relatively rich countries will probably never feel any food security ramifications from this opt-out.  If their own farmers can't supply something they demand, it can always be imported, and their buying power will exceed that of other import dependent societies around the world when supplies are tight.

So overall, the vast majority of people in these 19 countries who don't farm are not giving up anything through this politically-driven decision to opt out of one particular method of plant genetic modification.  However that is not the case for everyone.

What Is Being Given Up In the 16 Opt-Out Countries- Options for Farmers

The farmers in the 19 opt-out countries do not have "GMO" crop options today, but there are potential biotech traits that would be very helpful for them in the future - a future that will be limited by this opt-out decision. (see specific examples below.) Because only a tiny minority of citizens in the developed world still farm, farmers lack political clout.

Foreground shows potatoes not treated for Late Blight, fungicide treated potatoes in the back. Image by D. Inglis

Potatoes are a major crop in many of these countries, and EU-based technology groups like the Sainsbury Lab have logically used biotechnology to move disease resistance genes from wild, Andean potatoes, into commercially relevant European potato cultivars. That is extraordinarily difficult to do through "conventional breeding" because potatoes don't normally reproduce through seed. The biotech potatoes are resistant to the disease which caused the Irish Potato Famine and which requires extensive fungicide treatment today. The potato growers in the 16 countries are being told that they must give up that option. Olives are an important, ancient, and culturally important crop in some of the opt-out countries, particularly Italy.  That venerable crop has only recently begun to face a threat from an exotic, introduced disease.  A "GMO" option might be one of the best hopes for olive farmers, but they are being told that their fellow citizens have decided to deny them that potential solution.  Many of the 19 countries have important wine industries.  They, like all wine grape growers, are growing the traditional grape cultivars that have hundreds of years of reputation.  Biotechnology is an extremely logical way to move some disease resistance genes from other wild grape species around the world.  That won't happen.  The opt-out countries are definitely giving up things that would benefit their minority farmer citizens, but when politics trumps science for regulation, the farming community will always be the loser.

The Ramifications Of These Opt-Outs Beyond Europe's Borders

If this was simply about some relatively rich countries that represent only a small fraction of global population and had negative ramifications for only their farming community, it would be one thing.  Unfortunately, throughout the history of "GMO Crops," the decisions of EU countries have had widespread ramifications in developing countries where billions of much poorer people live.  In his book, Starved for Science published in 2008, Robert Paarlberg documented how the mostly EU-based "rich world" precautionary approach to biotech crops was projected on Africa in particular, and developing nations in general. Some countries in Africa, such as Kenya are seeking to break through this blockage, but these are the exceptions. Certain environmental NGOs have made anti-GMO campaigning central to their activities in the developing world and have put tremendous effort into opposition to "GMO" options.  They have opposed insect resistant Bt-Brinjal which would be an alternative to repeated insecticide treatments, typically applied hand and even by children.

From blogger Joan Conrow who interviewed farmers in India. "“I am waiting for the Bt brinjal. We cannot continue this crop with so much spraying. After two, three days, my skin is itching and I feel nausea. Sometimes I feel like maybe I am going to die.”

They have prevented the introduction of Golden Rice which could prevent vitamin A deficiencies that often cause blindness and death in some poor regions today. They have opposed the introduction of disease resistant bananas in parts of Africa where bananas are an important part of the food supply that is threatened by a new pathogen.   This "opt-out" phenomenon in parts of the EU is likely to reinforce the role of rich world influence on policy decisions in countries where food security is a far more pressing issue.

So this round of opt-outs changes nothing in terms of current farming practice and has no real cost to the citizens in these countries who are driving the decision.  It does; however, have real costs for others.  It will deny many EU farmers potentially valuable options in the future, particularly as the science of genetic engineering advances.  It will foster continued "green imperialism" which is the export of Europe's extreme precaution to parts of the world where food scarcity is real and where farmers could greatly benefit from biotechnology.  This is frustrating considering that crop biotechnology was introduced with great care and regulatory preparation.  The technology has an excellent track record of safety as well as economic and environmental benefits.  I guess what we have learned is that there is no statute-of-limitations on saying "the sky is falling."

You are welcome to comment here and/or to email me at savage.sd@gmail.com

Thursday, July 16, 2015

The Missing Party In The Discussion About Sustainable Farming

Lots of our prime farmland is rented

(This post originally appeared on Forbes, 7/15/15)

The good news is that state-of-the art sustainable farming practices can pay for themselves.  When fields are tended in a way that improves soil quality over time, there are multiple environmental benefits in terms of water quality, greenhouse gas emissions, and energy demand.  At the same time, this kind of farming increases the value of land through increased productivity and greater drought resilience.  The not so good news is that farmers rent much of the land they farm, so they don’t fully benefit from the financial up-side of this sort of sustainable farming.  And typically, those that own the land are far removed from the details of farming.  I believe that this disconnect and misalignment of financial incentives is a key barrier to the fuller implementation of the kind of farming that could meet both our environmental and food supply goals.

Maybe You Can’t Buy The Farm, But You Can Rent It

There are historical and logical reasons why so much farmland is rented.  As mechanization steadily reduced the number of people needed to produce food, the descendants of previous farming families tended to retain ownership of the land even after they had migrated to cities.  Those who continued to farm found that it is better to expand their operations by renting land rather than through buying.  With the unpredictable ups and downs of commodity prices, a big mortgage puts a farmer at too much risk of bankruptcy.  Also, the price of land can vary for many reasons unrelated to its potential crop production (development potential, mineral rights…), while land rents are very tightly connected with the likely crop value (see graphs below).  Renting land also makes sense for the owners because it represents a steady stream of income.

How land rents are related to potential productivity for 4 Midwestern states

However, even though the leasing of farmland is a practical system, the way it is typically done today misses the opportunity for a win-win-win scenario for the farmer, the land owner, and the environment.  There are different kinds of leases, but a widespread arrangement is a simple annual cash rent.  The farmer pays a set price for each given year with no guarantee that they won’t be outbid for that particular property the next year.  This focuses farming decisions on short term economics.  For instance the prevailing rents in any locale are usually based on the income potential of and risk profile of a few crops.  Thus in much of the heart of the American Midwest, a corn/soy rotation or even continuous corn is what is needed to be able to pay the rent and still make a little money.  There might be good agronomic reasons to include something like wheat or a forage crop in the rotation, it isn’t feasible because those crops are not worth as much, and in the case of wheat, have a disease risk issue.

Land Rent is a major part of the farmer's annual cash outlay
The optimal, soil-building farming methods I mentioned above often take a few years to produce their beneficial effects, and entail some risk along the way.  There is a several year transition from a plow-based system to no-till or other reduced tillage system.  There is a need for new equipment and for the first few years there can be higher risk if the planting season is wet or cold.  After a few years the risks become lower than with tillage, but without a longer-term lease arrangement, the initial investment does not make sense.  There are similar pay-off delays for other best practices like cover cropping and controlled wheel traffic.   The prevailing, annual cash rent arrangement as well as annually focused lending don’t support these sustainable practices.


Land rental is big business
Over the past several years there have been a number of very well intentioned, multi-stakeholder initiatives which have sought to establish objective, quantifiable metrics for agricultural sustainability with the idea of encouraging positive options.  The parties at the table have included environmental NGOs, food manufacturers, food retailers, technology companies and farmer organizations, but to my knowledge there has been no one at the table representing the interests of absentee land owners.  This is unfortunate because it is their land asset, which has the potential to increase in value.  What is needed is a way for farmers and land owners to share the risk and investment of the shift in practices and then to share the increase in potential production value.

This issue of misaligned incentives on rented farmland is one of my "concerns about the future of the food supply,” but I believe it is something eminently solvable.  I know there are plenty of progressive farmers who would be able to make the right decisions about how to improve each given field.  I believe that if the distant land owners could be informed about the potential, many of them would gladly engage.  There is probably a role for an environmental NGO to help bridge that divide in our society.  The progress could also be documented by a multi-stakeholder agreed upon sustainability metric.  Any ideas about how to make this happen are welcome!

Friday, June 26, 2015

Who Controls The Food Supply?



Who has actually has the control? Maybe not who you think. Certainly not Pinky and the Brain.
(The serious part of this post originally appeared on Forbes, 6/26/15)

A common anti-GMO narrative is that large international companies seek to “control the food supply” through patents and the ownership of seed companies.  Ironically, the opponents of plant biotechnology have exercised a far more significant degree of “control”.  Very few of the possible “GMO” crop options have ever been commercialized in either the developed or developing world.  It gives me no pleasure to say this, but over the last 20 years I've watched as anti-GMO activists have successfully employed three, potent control strategies:  political over-ride of the regulatory system, manipulation through brand protectionism, and pressure exerted via importers. 

The farmers who have been granted the opportunity to grow biotech crops have adopted them enthusiastically. The traits have provided growers with logistical advantages, reductions in risk, and/or economic benefits. This has been true in both the developed and developing world.

Adoption rates of biotech varieties in various crops and geographies (data from The Context Network, USDA-APHIS, FAO-Stats)



However, very few of the world's fruit or vegetable growers have had a biotech option, nor have the farmers who grow wheat, barley, rice, potatoes or pulse crops.  This is true in spite of the fact that genetic engineering could address important and even critical needs in those crops.

Political Over-ride


The first success of the anti-GMO movement was the politically driven decision by most of Europe not to allow biotech crops to be cultivated and to require GMO labeling of foods.  The response of those food companies was to avoid GMO ingredients so they would not have the stigma of a label.  The EU subsequently funded a huge amount of safety testing, and their scientific bodies have concluded that there is no special risk associated with these foods.  But for Europepolitics still trumps science and that phenomenon has been exported through European influence on governments throughout the developing world.  Groups like Greenpeace have also aggressively opposed any efforts to allow poor farmers around the world to ever try out the technology.  The food supply for the poor is certainly being “controlled,” but by the activists, not by the seed companies.

Manipulation Through Brand Protectionism


A strategy of the anti-GMO movement for control of the rich world food supply has been to exploit brand protectionism.  The first example was with the potato industry.  An insect resistant potato was launched in 1996 at the same time as biotech traits were first commercialized in soybeans, cotton and Canola.  I interviewed many potato growers in the first few years the trait was available and they were extremely happy to have a solution to their most damaging insect pest, the Colorado Potato Beetle.

Colorado Potato Beetle Damage (photo by Jeff Hahn, UMN Extension)


Potato growers were also excited about virus resistance and improved storage traits that were in the product development pipeline.  Frito-Lay was sponsoring biotech trait development in universities for the potatoes used to make chips.  The activists recognized that in the North American potato industry, McDonald’s and Frito-Lay have enormous economic leverage as the biggest customers for frozen fries and chipping potatoes. They threatened those company’s brands with the prospect of unwanted press attention through targeted protests.  At McDonald’s, the decision was taken at the CEO level to avoid the brand risk, and so, in three phone calls to frozen fry producers, biotech potatoes were finished (I know this from three people who participated in that meeting).  A similar marketing-driven decision at Frito-Lay led to termination of their development programs.  There was nothing the potato growers, the major processors, or Monsanto could do about it because of the market power of those huge food companies – companies who effectively yielded that leverage to the control of the activists.  Meanwhile, potatoes still require extensive and costly pest control measures.

Brand Protectionism's Expanded Reach

The success of the activists in exploiting brand protectionism had a major chilling effect on other crops with high profile, consumer brands.  In the mid 1990s there was a great deal of interest in biotechnology solutions.  I was personally aware of projects that had been started or which were planned for bananas, coffee, grapes, tomatoes, lettuce, strawberries and apples.  When MacDonald’s and Frito-Lay acquiesced to the activist pressures around 1999, all the planning and work was halted in those and other brand-sensitive crops.  The ag biotech companies like Monsanto or Syngenta or DuPont essentially gave up on biotech efforts in “specialty crops” and focused only on the big row crops.  Fifteen years later that pattern of effective activist control remains largely in place.

Fusarium head blight of wheat (right) reduces
yield and leads to rejected loads because of the
DON mycotoxin (Wikimedia image)

Pressure Exerted Via Importers

At the turn of the century there were two biotech traits poised for commercialization in wheat in the US and Canada (wheat being one of the largest and most extensively traded crops in the world).  There was to be a herbicide resistance trait from Monsanto, and also a disease resistance trait from Syngenta.  Once again, I had the opportunity to interview many wheat growers to assess their interest in these options.  Most already had positive experiences growing biotech soy, corn or Canola, and they were keen to try the new wheat options.  They never got that chance.  Major wheat importers from Europe threatened to boycott all North American wheat if any commercial biotech varieties were planted in the US or Canada.  Europeans grow a great deal of wheat, but they need the high quality Hard Red Spring Wheat and Durum pasta wheat grown in the Northern Plains and Prairie provinces.  European bread and pasta makers did not want to have to label their products as containing GMOs, knowing that this would make them the subject of activist pressure.  So they used their considerable economic leverage as importing customers and made the boycott threat (not in a public way, but quite clearly).  The wheat grower organizations in the US and Canada could not resist and reluctantly asked Monsanto and Syngenta to stop their programs.  Both companies complied.  This was a clear example of food supply control – control based on the activist’s ability to create marketing issues for the sort of companies that really do have leverage.

The anti-GMO movement continues to use the threat of brand damage to get food companies and food retailers to use their market power to inhibit the introduction of new biotech traits and crop options.  These same strategies may well block second generation traits in applespotatoescitrus, and tomatoes.  The GMO labeling efforts and non-GMO projects are transparently being pursued with the goal of eliminating even the few existing biotech crops.


So who controls the food supply? Does that control entail any respect for the opinions and needs of farmers?  Do those that exercise the control contribute in any way to solutions to real world challenges and threats to the food supply?  Do those that exercise the control help to develop useful tools for the resource-poor farmers in the developing world?  Are any of the big food industry players with critical leverage willing to resist the control that is being achieved via their market power?  Are consumers happy with the reality of a food supply controlled by those who reject sound science?  Are they happy with a food supply controlled with the aid of food companies who profit from the fears that they and their allies have planted?

You are welcome to comment here and/or to email me at savage.sd@gmail.com

Wednesday, May 13, 2015

Pests In Paradise

Our adventure started here after an 8-mile hike to Snowmass Lake near Aspen, Colorado
(originally posted on Forbes, 5/11/15

I learned something very important about crop pests in a most unexpected setting – a paradise-like wilderness area in the Colorado Rockies.  It was the summer of 1978 and I had gotten married the year before. This was my first chance to share a favorite place, the Snowmass/Maroon Bells Wilderness Area, with my wife.  We backpacked into Snowmass Lake and day-hiked to high passes through huge meadows filled with beautiful wildflowers.  However, on this trip, I noticed details I had never observed on earlier visits as a suburb-dwelling teen.  With “new eyes” from my first year of agricultural training, I saw that many of the plants showed signs of insect feeding damage or gall formation.  They exhibited symptoms of fungal infection – such as rusts and leafspots.  There were pests in this paradise! And they were host specific – not interlopers carried in on the boots of visitors like us.
View from Buckskin Pass
Thinking about it, I realized that this wasn’t really surprising.  Plants have the unique “super power” of turning sunlight, water and carbon dioxide into the food that directly or indirectly feeds everything else – including us.  It makes perfect sense that insects and fungi have evolved to “harvest” that energy, in even this pristine ecosystem.  I then realized that what we call “pests” are simply part of the natural order.  Thus, it is to be expected that we often have to find ways to deal with “pests” of cultivated crops.  The need for pest control isn’t an artifact of human farming. Practical farming needs may complicate pest control, but the basic phenomenon of pests is entirely “natural.”


On one hand, we might say that a “pest” is simply a human concept for cases where this natural phenomenon interferes with our agenda.  However, it seems that plants “agree” with our assessment that these damaging, dependent organisms are pesty. Plants are obvious targets, but they don’t just take it.  I once heard a presentation about the genetics of a particular alpine wildflower that grows in exactly the same kind of meadows we were visiting in 1978. This species has genetic “factions” employing two different strategies to deal with insects that want to eat it.  One is to put energy into rapid growth and seed production, so that even with bug damage, the species survives.  The other strategy is making chemicals to protect the plant from the bugs, leaving less energy for seed production.  Depending on the season, one strategy or the other is more successful.
Chemical defense is common among plants.  In some cases we have come to like the pesticidal chemicals they make. The caffeine in coffee and the capsaicin in hot peppers were “intended” by those plants to ward off “pests.”  Many vegetables we enjoy, such as tomatoes, eggplants and cauliflower, still make some of a not-so-nice “natural insecticide” called nicotine.  But don’t worry. You would have to eat an enormous amount to be hurt by the nicotine, caffeine or capsaicin.
So since pests are part of the natural order, and since plants fight back with their own “pesticides,” human use of pesticides makes sense as part of a pest management strategy for the plants we tend.  That is particularly true now that we have developed many products that are quite specific for certain pests, and very low risk for us or for the environment. Pesticides are also necessary tools for those farming under the organic rules.  Synthetic pesticide residues are present at even less consequential levels in our produce than plant-made chemicals.
A slightly modified quote from the Princess Bride (modified from https://www.pinterest.com/lemai13/the-princess-bride/)

If you have the chance, I encourage you to visit those Colorado wildflower meadows.  They are beautiful, and unless you look for it, you probably won’t notice the battle between plants and pests that is going on in the background.  The wildflowers survive, even with the damage.  The season is also short, so there are not many generations of the pests. We humans require a higher standard of pest protection for our crops. To make the most responsible use of our land, water, fuel or other inputs, we cannot tolerate too much pest damage or the crop is diminished.  Besides, as even my grand daughter realizes, pests are yucky!  

You are welcome to comment here and/or to email me a savage.sd@gmail.com