Showing posts with label genetics. Show all posts
Showing posts with label genetics. Show all posts

Monday, February 15, 2016

Using DNA To Fight Fabric Fraud

California Pima Cotton
(This post originally appeared on Forbes 2/13/16)

The most desirable cotton is distinguished by having extra-long staple fibers (Egyptian, Pima) and such cotton commands a price premium. But as the cotton moves around the world, and through the fabric value chain, there is the potential for it to be diluted with or fraudulently replaced with lower price, lower quality materials. Clothing manufacturers like to make quality-related or sourcing claims, but the closer an item gets to the retail shelf, the more difficult it is to certify that the garment is really made from the type of cotton they intended. A company based on Long Island called Applied DNA Sciences (NASDAQ: APDN) has developed ways to identify what is real and what is not in this market. They can verify cotton items by identifying the native cotton species via DNA testing. Their methods can tag and test cotton textiles and finished goods using DNA technology to provide a means for traceability to the source were the cotton was grown and harvested. They employ sophisticated DNA testing of the type typically used in human forensics – the kind of thing you might see on an episode of CSI.


Scanning Electron Micrograph of Cotton Fibers (Wikipedia)


How does this work? Each cotton fiber was originally a living plant cell, and so it had the full compliment of cotton genes. By the time the cotton boll has matured, the cells are no longer viable and the DNA begins to degrade, something that continues during the many steps of ginning, spinning, weaving, dying etc. Still, enough DNA fragments remain to allow ADNAS to detect important elements of its genetic signature. They can already tell the difference between something like the premium Pima varieties and common upland cotton also known as fiberTyping Recently ADNAS has partnered with the Agricultural Research Service Genetics Unit of the US Department of Agriculture to genetically verify multiple types of individual cotton cultivars, and assist the cotton industry in protecting quality, traceability and economic investments. The USDA scientists have an extensive collection of cotton germplasm from around the world. Like many crops, the cotton has to be adapted to the growing conditions in each region. That means that cotton grown in India, China, Spain, Egypt or Uzbekistan may have unique and detectable differences in their DNA. In the near future a clothing company may be able to make label claims about cotton quality and origins no matter how convoluted the path has been from the farm to the store. In addition to quality issues, responsible clothing manufacturers want to be able to avoid sourcing their cotton from parts of the world where undesirable practices like forced child labor are known to happen. This will also protect the farmers who grow the high quality product. There are many other logical applications of this sort of technology such as olive oil, premium wine or the dietary supplement industry.

Applied DNA Sciences has an additional system that it calls “SigNature-T” which can be used to intentionally “tag” cotton or other commodities for aspects of how they were produced - things that go beyond anything specific to the plant’s own genetics. For instance an on-the-ground certifier could inspect a crop to document the fact that it was grown with sustainable farming practices like no-till and cover cropping. ADNAS has identified certain unique, botanically-derived, DNA tags which they can produce, and then apply in tiny amounts to the cotton at a step like ginning. Later, that DNA signature can be detected to say, “yes, this cotton was produced with x,y or z desirable methods” because those specific DNA tags can only be there if the certifier allowed it. The same thing could be done in many crops to verify a variety of claims.

USDA-ARS Shot Of No-Till Cotton


Cotton has been a logical place for ADNAS to begin because it represents literally hundreds of millions of tons of product from around the world, and they have the capacity to do the tracking for that kind of volume. But all plant-based products carry with them distinctive “stories” written in their own DNA or which could be added as micro amounts of DNA tags. Through the incredible advances in the field of molecular biology, those stories can now be used to encourage and reward “integrity” in the system.

You are welcome to comment here and/or to email me at savage.sd@gmail.com

Friday, May 8, 2015

Does Science Belong On Your Dinner Plate?


(Originally published on Forbes 5/5/15

I was recently asked to give a talk in Toronto addressing this question: “Does science belong on my plate?” The quick answer is:

“No, because Science isn’t a “thing” you can serve or eat. Science is really a verb - a process, a method, a conversation.”

A longer, better answer is:

“There is a rich history of innovation and change in the human food supply extending over millennia. More recent innovation examples that have been achieved using sound science are a continuation of that tradition. They certainly belong on our plates.”

Many consumers have the impression that, until recently, food and food production was something little changed. This mistaken view is understandable considering modern society’s isolation from the production of food, and marketers’ penchant for using romanticized imagery and narratives to sell food products.

This is a great bread product, but that image has nothing to do with how the wheat for that is produced today.


The truth is that innovation and change have been central to food and farming throughout human history - both before and during the scientific era. One of my goals as a new Forbes contributor will be to tell some of the stories behind interesting and important innovations that have changed what is “on our plates” in very positive ways.

Feast or Famine

From the beginning, a fundamental challenge for humanity has been that sources of food tend to be either over-abundant or scarce. Thus, innovations around food storage and preservation have been key to our survival (e.g. drying, salting, pickling, cheese making, fermentation…). Even the ancient storage of dry grains involved innovations like using herbs to line the urns to reduce damage from insect pests.
Cold storage has been used to spread-out the supply of food beginning with caves or cellars. Later people used stored ice from the winter, and eventually came up with refrigeration. Susanne Freidberg’s excellent book, Fresh, describes just how transformative and controversial the innovation of mechanical refrigeration was as it was slowly adopted around the turn of the 20th century.

Genetics

Another major theme of human food-supply innovation has been “genetic modification.” The “natural,” pre-domesticated forms of our food plants are barely recognizable vs their modern forms. Over millennia, humans consciously or unconsciously selected for more desirable specimens, and in so doing, they achieved dramatic genetic changes even with no understanding of the underlying biology. While this worked well for grains and vegetables, a few thousand years ago people realized that you cannot propagate a desirable specimen of a tree or vine by replanting its seeds, because they don’t grow up to be the same as the parent. So, people innovated various ways to “clone” these desirable cultivars – rooting, grafting, budding etc. A “transgenic” innovation of that category saved the European grape industry in the 1870s when it was on the verge of collapse due to a deadly new pest. The innovated solution was to use American grape species as the protective rootstock on which to graft venerable varieties of the traditional species, Vitis vinifera. That system still protects virtually all of the world’s grapes today.
This cool vineyard I saw in Sicily a few weeks ago survives because it is on American rootstock

In the last century, increasing scientific understanding has enabled continued innovation to enhance the food supply in terms of quality and availability. By better understanding plant physiology, innovative controlled atmosphere storage systems were developed that have greatly enhanced our access to fresh fruits throughout the year. Similar packaging and shipping innovations have reduced post-harvest waste and expanded value-added, “fresh cut” options for consumers. Science-based advances in chemistry, biology, and toxicology have enabled innovative new methods of crop pest management with far better health and environmental profiles. Rapidly advancing understanding of genetics has enabled a growing and increasingly precise “tool box” for crop innovation (cross breeding, hybridization, wide crosses, mutation breedinggenetic engineeringmarker assisted selectiongenome editing).
The long tradition of food and agricultural innovation continues, enhanced by the application of the scientific method.  So, yes – “science” in that form certainly belongs on our plates.  I'm happy to talk about this in the comments here and/or at savage.sd@gmail.com