Friday, October 4, 2019


(This piece was originally posted on the POP Agriculture Podcast 9/19/2019)

The Tardis (photo by  Zir, Wikimedia Commons )
The Tardis (photo by Zir, Wikimedia Commons)

The show has been running on the BBC since 1963, and part of what makes that long run possible is that the Doctor has the ability to be re-born from time to time with a different human body (although supposedly with two hearts).  There have been 13 different stars playing the part of The Doctor, and the most recent one is Jodie Whittaker (#13), the first female. I just finished binge watching that season to catch up! Other recent leads have been David Tennant (#10), Matt Smith (#11), and Peter Capaldi (#12).

Hard core Doctor Who fans call themselves “Whovians,”   The Urban dictionary puts it this way:  A few easy ways to tell if someone is a Whovian are: Turn off all the lights while repeating "Hey, who turned out the lights?", moving statues around while they aren't looking or telling them not to blink while staring at a statue, yelling exterminate at them in a freaky as hell robot voice, and watching how they react. If they start screaming they're most likely a Whovian.” 

So, what’s the “exterminate” thing about?  There are new and different “bad guys” for the Doctor to out-wit in most episodes, but throughout the years of shows, a frequent “threat to the future of humanity” has been a strange race of robotic space beings called the Daleks.  Back in the earliest, obviously low budget days of the show, the Daleks looked a lot like modified trash cans (I guess “dust bins” since it’s British) with toilet plungers for arms.  That basic, funky, Daleck look has been preserved over the history of the show as has that creepy chant that of theirs: “Exterminate! Exterminate! ….” 
Dalek image by Nelo Hotsuma from Rockwall [CC BY 2.0 (]
Dalek image by Nelo Hotsuma from Rockwall [CC BY 2.0 (]

So the Daleks of Dr. Who are a classic example of fictional, pop-culture aliens who are out to exterminate humans. There are also many examples of pop-culture stories of humans trying to “exterminate” some sort of alien invaders.  On today’s POPagriculture podcast we are going to talk about a real world story about how humans successfully managed to “Exterminate” some alien invaders who were threatening the grape industries of California.

Standard Intro

So, in California there are lots of farmers who tend 880,000 acres of grapes.  These include those that are specifically for drying to make raisins.  Other grapes are grown as a nice, fresh, mostly seedless snack.  Throughout the state there are also various “appellations” for wine grape production.  Together these crops bring in about 5.8 billion dollars a year to the state’s economy. These products are loved by not just Americans but by people around the world.  California has nearly ideal climatic conditions for each of these grape categories, and since they are relatively drought tolerant they are a good fit for our limited water resources.  One nice thing is that we don’t have much rain during the summer and so we don’t have to deal with some difficult fungal diseases that are a big challenge in places like Europe.  There are still certainly pests that have to be dealt with, but the grape industry has always been a leader in doing that is a sustainable way.

Lobesia:  European Grapevine Moth image by Jack Kelly Clark , University of California Extension
Lobesia: European Grapevine Moth image by Jack Kelly Clark, University of California Extension
So that’s the background, but the drama for our story began in the summer of 2009 in a famous, premium wine grape-growing region called the Napa Valley.  One of the growers there spotted a caterpillar munching away on some of his grapes.  Now there are several kinds of moths that can be pests of California grapes, particularly during their larval stage as caterpillars.  But the grower noticed that this one didn’t look like those familiar types. Being suspicious he sent a picture to a county extension agent – a kind of University employee whose job it is to support the industry with research and advice.  It turned out that was a new kind of moth to California – an alien invader!  Ok, not a space alien, but scary from the perspective of grape farmers.  It was called the European Grapevine Moth or “EVGM.” As its name implies it has been a pest in that continent for a long time.  That name doesn’t sound scary enough for our story so lets use the scientific name, Lobesia botrana.

Now the thing is that this wasn’t just another moth.  The caterpillar stage of this bug would do a lot more damage to the grape clusters than the other moth species and that would mean nice things like “frass” or insect poop on the grapes or later the raisins.  To make matters worse, the feeding opens the way for fungi that rot the grapes and that kind of infection can spread from berry to berry throughout the cluster.  This would make it a lot harder for the raisin growers to have a high quality product, it would mean a lot more food waste even all the way to the consumer level for the table grapes.  Moldy grapes definitely don’t make for high quality wine!

Rotting grape image by Andrea Lucchi , University of California
Rotting grape image by Andrea Lucchi, University of California


Now of course there wasn’t an extraterrestrial “Doctor” to lead this campaign, but even Dr. Who drafts a team of regular humans to help defeat the aliens.

In this case the team comprised representatives of the grower communities, university experts and government employees from the relevant state and federal departments. They held an emergency meeting and decided that they wanted to see if they could come up with a way to not only stop the spread of the pest, but if at all possible to completely eradicate it from California.  Eradicate! Doesn’t sound quite as harsh as “exterminate!” but it’s essentially the same idea.



In order to see what they were up against, sixty thousand “Sticky traps” were distributed state wide at a density of 39 per square kilometer in vineyards and 10 per square kilometer in residential areas. In the next 2010 growing season they found 100,000 moths in several California counties.  This was going to be a big challenge!  Only a comprehensive strategy with broad participation would give any hope of winning.  So the team developed a multi-prong strategy:


Those sticky traps continued to be used to monitor progress, but they were careful to use red colored traps because they are much less likely to accidentally trap honeybees.


It was important to find ways to limit further spread of the aliens. The adult moths can fly, but they don’t tend to fly too far as long as they can find the grapes they want. Quarantine rules were set up to prevent fruit, farm equipment, recycled fence or grape posts, or other things that might allow the pest to hitch-hike long distances. It turned out that the moth larvae could survive the stemming and crushing and even pressing of wine grapes – so it was critical not to move around those by-products of the winemaking process.


They also used an approach called “pheromone confusion” that was set up on an area-wide basis where the Lobesia had been found.  This involves putting up emitters of the specific sex hormone for this moth so that the males are getting so many “scent trails” that they rarely actually find a female to actually mate. 


There were lots of outreach programs to get everybody up to speed on the situation and to know their role.  This included grape growers, wineries, and fruit or raisin packers, and pest control advisors. The outreach also had to include on the order of 3,000 homeowners because they also needed to cooperate, especially if they had backyard grapes, as many did. The coordinated task force would help those owners to treat their grapes or remove their fruit so that they didn’t become a reservoir to then fan out into the commercial vineyards. Not only were there public meetings to reach all these groups, there was a Facebook page and a website at


The researchers developed a sophisticated “degree day model” to predict when each of the 3-4 new generations of moths would be coming out so that insecticide sprays could be timed just right, not only to protect the crop, but to prevent the moth numbers from really blowing up as they would if not strategically checked this way.  Almost all of this spraying was done on a voluntary basis at the grower’s own cost.  In Napa and Sonoma in 2012 the growers treated more than 12,000 acres.  The organic growers also sprayed using the insecticide options that are allowed under their rules.  


The combination of the quarantines, the pheromone confusion and the well-timed insecticide sprays achieved what is called an “allee effect” in population biology lingo.  This is when the population size gets down to the point where there are too few of the pests in a given area to successfully mate.


Historical progress  towards eradication of EVGM from California. University of California.
 Historical progress towards eradication of EVGM from California. University of California.

This massive, voluntary, cooperative effort was highly coordinated across the different counties of the state and it began to pay off.  In 2011 there were 2,335 acres quarantined because of the presence of the moth.  By 2014 that number was down to 446 acres.  By 2016 the pest was officially declared to have been eradicated.

Figure 2 Victory Lap! (University of California)
Victory Lap! (University of California)



In the Dr Who shows the Daleks don’t ever seem to manage to “eliminate” humans, but in this story the humans managed to “eliminate” the alien pest. 


There have been some other historical examples where the humans were able to “exterminate” a new insect pest.  Another strategy that was used in some of these battles was the intentional release of sterile males of the pest species so that they so that they would out-compete the wild males trying to breed with the wild females.  This helped when the Mediterranean Fruit Fly came to California several times over the years.   


Another pest eradication success story had to do with a pest of cotton called the Pink Bollworm.  In that case in addition to the release of sterile males, pheromone confusion, area-wide “plow downs” and strategic sprays, the growers also had the opportunity to use lines of “Bt cotton,” genetically engineered to be resistant to the pest. 


Now unfortunately, it will never be possible to have this sort of victory over all the pests of grapes or any crops for that matter.  Still, when growers are only up against a familiar set of pests, they can achieve a sufficient degree of control to protect their livelihood, keep food affordable, and prevent the pest-related quality or food safety problems that would otherwise flow on down to the consumer level.








No comments:

Post a Comment

Please send comments if you wish. Sorry about the word verification, but I'm getting tons of spam comments